Skip to Content

MCP Neurolora

View original on GitHub 

MCP Server Version License

An intelligent MCP server that provides tools for code analysis using OpenAI API, code collection, and documentation generation.

πŸš€ Installation Guide

Don’t worry if you don’t have anything installed yet! Just follow these steps or ask your assistant to help you with the installation.

Step 1: Install Node.js

macOS

  1. Install Homebrew if not installed:
    /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
  2. Install Node.js 18:
    brew install node@18 echo 'export PATH="/opt/homebrew/opt/node@18/bin:$PATH"' >> ~/.zshrc source ~/.zshrc

Windows

  1. Download Node.js 18 LTS from nodejs.org 
  2. Run the installer
  3. Open a new terminal to apply changes

Linux (Ubuntu/Debian)

curl -fsSL https://deb.nodesource.com/setup_18.x | sudo -E bash - sudo apt-get install -y nodejs

Step 2: Install uv and uvx

All Operating Systems

  1. Install uv:

    curl -LsSf https://astral.sh/uv/install.sh | sh
  2. Install uvx:

    uv pip install uvx

Step 3: Verify Installation

Run these commands to verify everything is installed:

node --version # Should show v18.x.x npm --version # Should show 9.x.x or higher uv --version # Should show uv installed uvx --version # Should show uvx installed

Step 4: Configure MCP Server

Your assistant will help you:

  1. Find your Cline settings file:

    • VSCode: ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
    • Claude Desktop: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows VSCode: %APPDATA%/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
    • Windows Claude: %APPDATA%/Claude/claude_desktop_config.json
  2. Add this configuration:

    { "mcpServers": { "aindreyway-mcp-neurolora": { "command": "npx", "args": ["-y", "@aindreyway/mcp-neurolora@latest"], "env": { "NODE_OPTIONS": "--max-old-space-size=256", "OPENAI_API_KEY": "your_api_key_here" } } } }

Step 5: Install Base Servers

Simply ask your assistant: β€œPlease install the base MCP servers for my environment”

Your assistant will:

  1. Find your settings file
  2. Run the install_base_servers tool
  3. Configure all necessary servers automatically

After the installation is complete:

  1. Close VSCode completely (Cmd+Q on macOS, Alt+F4 on Windows)
  2. Reopen VSCode
  3. The new servers will be ready to use

Important: A complete restart of VSCode is required after installing the base servers for them to be properly initialized.

Note: This server uses npx for direct npm package execution, which is optimal for Node.js/TypeScript MCP servers, providing seamless integration with the npm ecosystem and TypeScript tooling.

Base MCP Servers

The following base servers will be automatically installed and configured:

  • fetch: Basic HTTP request functionality for accessing web resources
  • puppeteer: Browser automation capabilities for web interaction and testing
  • sequential-thinking: Advanced problem-solving tools for complex tasks
  • github: GitHub integration features for repository management
  • git: Git operations support for version control
  • shell: Basic shell command execution with common commands:
    • ls: List directory contents
    • cat: Display file contents
    • pwd: Print working directory
    • grep: Search text patterns
    • wc: Count words, lines, characters
    • touch: Create empty files
    • find: Search for files

🎯 What Your Assistant Can Do

Ask your assistant to:

  • β€œAnalyze my code and suggest improvements”
  • β€œInstall base MCP servers for my environment”
  • β€œCollect code from my project directory”
  • β€œCreate documentation for my codebase”
  • β€œGenerate a markdown file with all my code”

πŸ›  Available Tools

analyze_code

Analyzes code using OpenAI API and generates detailed feedback with improvement suggestions.

Parameters:

  • codePath (required): Path to the code file or directory to analyze

Example usage:

{ "codePath": "/path/to/your/code.ts" }

The tool will:

  1. Analyze your code using OpenAI API
  2. Generate detailed feedback with:
    • Issues and recommendations
    • Best practices violations
    • Impact analysis
    • Steps to fix
  3. Create two output files in your project:
    • LAST_RESPONSE_OPENAI.txt - Human-readable analysis
    • LAST_RESPONSE_OPENAI_GITHUB_FORMAT.json - Structured data for GitHub issues

Note: Requires OpenAI API key in environment configuration

collect_code

Collects all code from a directory into a single markdown file with syntax highlighting and navigation.

Parameters:

  • directory (required): Directory path to collect code from
  • outputPath (optional): Path where to save the output markdown file
  • ignorePatterns (optional): Array of patterns to ignore (similar to .gitignore)

Example usage:

{ "directory": "/path/to/project/src", "outputPath": "/path/to/project/src/FULL_CODE_SRC_2024-12-20.md", "ignorePatterns": ["*.log", "temp/", "__pycache__", "*.pyc", ".git"] }

install_base_servers

Installs base MCP servers to your configuration file.

Parameters:

  • configPath (required): Path to the MCP settings configuration file

Example usage:

{ "configPath": "/path/to/cline_mcp_settings.json" }

πŸ”§ Features

The server provides:

  • Code Analysis:

    • OpenAI API integration
    • Structured feedback
    • Best practices recommendations
    • GitHub issues generation
  • Code Collection:

    • Directory traversal
    • Syntax highlighting
    • Navigation generation
    • Pattern-based filtering
  • Base Server Management:

    • Automatic installation
    • Configuration handling
    • Version management

πŸ“„ License

MIT License - feel free to use this in your projects!

πŸ‘€ Author

Aindreyway

⭐️ Support

Give a ⭐️ if this project helped you!

Last updated on