Skip to Content
MCP ServersCommunityZig MCP Server

Zig MCP Server

View original on GitHub 

A Model Context Protocol (MCP) server that provides Zig language tooling, code analysis, and documentation access. This server enhances AI capabilities with Zig-specific functionality including code optimization, compute unit estimation, code generation, and best practices recommendations.

Features

Tools

1. Code Optimization (optimize_code)

Analyzes and optimizes Zig code with support for different optimization levels:

  • Debug
  • ReleaseSafe
  • ReleaseFast
  • ReleaseSmall
// Example usage { "code": "const std = @import(\"std\");\n...", "optimizationLevel": "ReleaseFast" }

2. Compute Units Estimation (estimate_compute_units)

Estimates computational complexity and resource usage of Zig code:

  • Memory usage analysis
  • Time complexity estimation
  • Allocation patterns detection
// Example usage { "code": "const std = @import(\"std\");\n..." }

3. Code Generation (generate_code)

Generates Zig code from natural language descriptions with support for:

  • Error handling
  • Testing
  • Performance optimizations
  • Documentation
// Example usage { "prompt": "Create a function that sorts an array of integers", "context": "Should handle empty arrays and use comptime when possible" }

4. Code Recommendations (get_recommendations)

Provides code improvement recommendations and best practices:

  • Style and conventions
  • Design patterns
  • Safety considerations
  • Performance insights
// Example usage { "code": "const std = @import(\"std\");\n...", "prompt": "Improve performance and safety" }

Resources

  1. Language Reference (zig://docs/language-reference)

    • Official Zig language documentation
    • Syntax and features guide
    • Best practices
  2. Standard Library Documentation (zig://docs/std-lib)

    • Complete std library reference
    • Function signatures and usage
    • Examples and notes
  3. Popular Repositories (zig://repos/popular)

    • Top Zig projects on GitHub
    • Community examples and patterns
    • Real-world implementations

Installation

  1. Clone the repository:
git clone [repository-url] cd zig-mcp-server
  1. Install dependencies:
npm install
  1. Build the server:
npm run build
  1. Configure environment variables:
# Create a GitHub token for better API rate limits # https://github.com/settings/tokens # Required scope: public_repo GITHUB_TOKEN=your_token_here
  1. Add to MCP settings:
{ "mcpServers": { "zig": { "command": "node", "args": ["/path/to/zig-mcp-server/build/index.js"], "env": { "GITHUB_TOKEN": "your_token_here", "NODE_OPTIONS": "--experimental-vm-modules" }, "restart": true } } }

Usage Examples

1. Optimize Code

const result = await useMcpTool("zig", "optimize_code", { code: ` pub fn fibonacci(n: u64) u64 { if (n <= 1) return n; return fibonacci(n - 1) + fibonacci(n - 2); } `, optimizationLevel: "ReleaseFast" });

2. Estimate Compute Units

const result = await useMcpTool("zig", "estimate_compute_units", { code: ` pub fn bubbleSort(arr: []i32) void { var i: usize = 0; while (i < arr.len) : (i += 1) { var j: usize = 0; while (j < arr.len - 1) : (j += 1) { if (arr[j] > arr[j + 1]) { const temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } } ` });

3. Generate Code

const result = await useMcpTool("zig", "generate_code", { prompt: "Create a thread-safe counter struct", context: "Should use atomic operations and handle overflow" });

4. Get Recommendations

const result = await useMcpTool("zig", "get_recommendations", { code: ` pub fn main() !void { var list = std.ArrayList(u8).init(allocator); var i: u32 = 0; while (true) { if (i >= 100) break; try list.append(@intCast(u8, i)); i += 1; } } `, prompt: "performance" });

Development

Project Structure

zig-mcp-server/ β”œβ”€β”€ src/ β”‚ └── index.ts # Main server implementation β”œβ”€β”€ build/ # Compiled JavaScript β”œβ”€β”€ package.json # Dependencies and scripts └── tsconfig.json # TypeScript configuration

Building

# Development build with watch mode npm run watch # Production build npm run build

Testing

npm test

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

MIT License - see the LICENSE file for details.

Last updated on