OpenAI MCP Server
Query OpenAI models directly from Claude using MCP protocol. This fork adds support for o3-mini and gpt-4o-mini models with improved message handling.
Cline Auto Install
Set up the MCP server from https://github.com/thadius83/mcp-server-openai.
Use "github.com/thadius83/mcp-server-openai" as the server name in cline_mcp_settings.json.
Analyse the readme and instructions below. Do not create new files in the repo, utilise the findings from pyproject.toml, src/mcp_server_openai/server.py, src/mcp_server_openai/llm.py
Once installed, demonstrate the server's capabilities by using one of its tools.
Installation Steps:
# Clone the repository
git clone https://github.com/thadius83/mcp-server-openai
cd mcp-server-openai
# Install the package
pip install .`
MCP Settings Configuration: The cline_mcp_settings.json should be configured with:
Correct server name format: "github.com/thadius83/mcp-server-openai"
Python module path structure for the server
PYTHONPATH environment variable pointing to the project directory
OpenAI API key passed as a command line argument
Example configuration:
{
"mcpServers": {
"github.com/thadius83/mcp-server-openai": {
"command": "python",
"args": [
"-m",
"src.mcp_server_openai.server",
"--openai-api-key",
"your-openai-api-key"
],
"env": {
"PYTHONPATH": "/path/to/mcp-server-openai"
},
"disabled": false,
"autoApprove": []
}
}
}
Requirements:
Python >= 3.10
OpenAI API key
Dependencies installed via pip (mcp>=0.9.1, openai>=1.0.0, click>=8.0.0, pytest-asyncio)
Available Tools:
Tool Name: ask-openai
Description: Ask OpenAI assistant models a direct question
Models Available:
o3-mini (default)
gpt-4o-mini
Input Schema:
{
"query": "Your question here",
"model": "o3-mini" // optional, defaults to o3-mini
}
Features
- Direct integration with OpenAIβs API
- Support for multiple models:
- o3-mini (default): Optimized for concise responses
- gpt-4o-mini: Enhanced model for more detailed responses
- Configurable message formatting
- Error handling and logging
- Simple interface through MCP protocol
Installation
Installing via Smithery
To install OpenAI MCP Server for Claude Desktop automatically via Smitheryβ:
npx -y @smithery/cli install @thadius83/mcp-server-openai --client claude
Manual Installation
- Clone the Repository:
git clone https://github.com/thadius83/mcp-server-openai.git
cd mcp-server-openai
# Install dependencies
pip install -e .
- Configure Claude Desktop:
Add this server to your existing MCP settings configuration. Note: Keep any existing MCP servers in the configuration - just add this one alongside them.
Location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%/Claude/claude_desktop_config.json
- Linux: Check your home directory (
~/
) for the default MCP settings location
{
"mcpServers": {
// ... keep your existing MCP servers here ...
"github.com/thadius83/mcp-server-openai": {
"command": "python",
"args": ["-m", "src.mcp_server_openai.server", "--openai-api-key", "your-key-here"],
"env": {
"PYTHONPATH": "/path/to/your/mcp-server-openai"
}
}
}
}
-
Get an OpenAI API Key:
- Visit OpenAIβs websiteβ
- Create an account or log in
- Navigate to API settings
- Generate a new API key
- Add the key to your configuration file as shown above
-
Restart Claude:
- After updating the configuration, restart Claude for the changes to take effect
Usage
The server provides a single tool ask-openai
that can be used to query OpenAI models. You can use it directly in Claude with the use_mcp_tool command:
<use_mcp_tool>
<server_name>github.com/thadius83/mcp-server-openai</server_name>
<tool_name>ask-openai</tool_name>
<arguments>
{
"query": "What are the key features of Python's asyncio library?",
"model": "o3-mini" // Optional, defaults to o3-mini
}
</arguments>
</use_mcp_tool>
Model Comparison
-
o3-mini (default)
- Best for: Quick, concise answers
- Style: Direct and efficient
- Example response:
Python's asyncio provides non-blocking, collaborative multitasking. Key features: 1. Event Loop β Schedules and runs asynchronous tasks 2. Coroutines β Functions you can pause and resume 3. Tasks β Run coroutines concurrently 4. Futures β Represent future results 5. Non-blocking I/O β Efficient handling of I/O operations
-
gpt-4o-mini
- Best for: More comprehensive explanations
- Style: Detailed and thorough
- Example response:
Python's asyncio library provides a comprehensive framework for asynchronous programming. It includes an event loop for managing tasks, coroutines for writing non-blocking code, tasks for concurrent execution, futures for handling future results, and efficient I/O operations. The library also provides synchronization primitives and high-level APIs for network programming.
Response Format
The tool returns responses in a standardized format:
{
"content": [
{
"type": "text",
"text": "Response from the model..."
}
]
}
Troubleshooting
-
Server Not Found:
- Verify the PYTHONPATH in your configuration points to the correct directory
- Ensure Python and pip are properly installed
- Try running
python -m src.mcp_server_openai.server --openai-api-key your-key-here
directly to check for errors
-
Authentication Errors:
- Check that your OpenAI API key is valid
- Ensure the key is correctly passed in the args array
- Verify there are no extra spaces or characters in the key
-
Model Errors:
- Confirm youβre using supported models (o3-mini or gpt-4o-mini)
- Check your query isnβt empty
- Ensure youβre not exceeding token limits
Development
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest -v test_openai.py -s
Changes from Original
- Added support for o3-mini and gpt-4o-mini models
- Improved message formatting
- Removed temperature parameter for better compatibility
- Updated documentation with detailed usage examples
- Added model comparison and response examples
- Enhanced installation instructions
- Added troubleshooting guide
License
MIT License
Last updated on